Single Phase Variable Frequency Drive VFD Circuit

Motors and other similar inductive loads specifically do not "like" operating with frequencies that might be not within their manufacturing specs, and tend to become a lot inefficient if forced to under such abnormal conditions.


For example a motor specified for operating with 60Hz may not be recommended to work with frequencies of 50 Hz or other ranges.

Doing so can produce undesirable results such as heating up of the motor, lower or higher than the required speeds and abnormally high consumption making things very inefficient and lower life degradation of the connected device.

However operating motors under different input frequency conditions often becomes a compulsion and under such situations a VFD or a variable frequency Drive circuit can become very handy.

A VFD is basically as the name suggests s device which can be used for operating an inductive load with the any desired frequency which might be most suitable for it as per its company specs.

This is normally done using the given control in the form of a variable knob scaled with different frequency calibration.

Making a VFD at home may sound to be a difficult proposition, however a look at  the design suggested below shows that after all it's not so difficult to build this very useful device (designed by me).

Circuit Description of the Proposed Single Phase Variable Frequency Drive Circuit

The circuit can be fundamentally divided into two stages: The half brige driver stage and the PWM logic generator stage.

The half bridge driver stage uses the half bridge driver IC IR2110 which single handedly takes care of the high voltage motor drive stage incorporating two high side and low side mosfets respectively.

The driver IC thus forms the heart of the circuit yet require just a few components for implementing this crucial function.

The above IC however would need a high logic and a low logic in frequencies for driving the connected load at the desired specific frequency.

These hi and lo input logic signals become the operating data for the driver IC and must include signals for determine the specified frequency as well as PWMs in phase with the mains AC.

The above info are created by another stage comprising a couple of 555 ICs and a decade counter. IC 4017.

The two 555 ICs are responsible for generating the modified sine wave PWMs corresponding to the full wave AC sample derived from a stepped down bridge rectifier output.

The IC4017 functions as a totem pole output logic generator whose alternating frequency rate becomes the MAIN frequency determine  parameter of the circuit.

This determining frequency is plucked from pin#3 of IC1which also feeds the IC2 triggering pin out and for creating the modified PWMs at pin#3 of IC2.

The modified sine wave PWMs are scanned at the outputs of the 4017 IC before feeding the IR2110 in order to superimpose exact "print" of the modified PWMs at the output of the half bridge driver and ultimately for the motor which is being operated.

Cx value should be appropriately selected or made variable in order to produce the required frequency for the motor.

The high voltage at the drain of the high side mosfet must be derived by rectifying the available mains voltage AC.

The supply voltage for both the stages can be made into a common line, same for the ground connection.

TR1 is a stepped down 0-12V/100mA transformer which provides the circuits with the required operating supply voltages.




0 Response to "Single Phase Variable Frequency Drive VFD Circuit"

Posting Komentar