Linear Hall-effect ICs are assigned with a feature which enables them to respond to both north and south poles of a magnet and over a wide range of magnetic strengths.
The modern hall effect ICs are designed with immunity to most mechanical stressful conditions such as vibrations, jerks, shocks and also against moisture and other atmospheric pollutions.
These devices are also immune to ambient temperature variations which otherwise could make these components vulnerable to heat producing incorrect output results.
Typically, modern linear Hall Effect ICs can work optimally over a temperature range of -40 to +150 degree Celsius.
Many standard linear Hall-effect ICs such as A3515/16 series from Allegro are “ratiometric” by nature, wherein the devices quiescent output voltage and sensitivity are at par with the supply voltage. The quiescent voltage could be typically half the supply voltage.
As an example if we consider the supply voltage to the device to be 5V, in the absence of a magnetic field its quiescent output would normally be 2.5V and would vary at a rate of 5mV per Gauss.
In case the supply voltage was to increase to 5.5V, the quiescent voltage would also correspond to 2.75V, with the sensitivity reaching the 5.5mV/gauss.
Linear Hall-effect ICs such as the A3515/16 BiCMOS incorporate a proprietary dynamic offset cancellation system with the help of an in-built high frequency pulse so tat the residual offset voltage of the Hall material is controlled appropriately. The residual offset could arise normally due to overmolding of the device, temperature discrepancies or due to other relevant stressful situations.
The above feature renders these linear devices with a significantly stable quiescent output voltage, well immune to all types of external negative impacts on the device.
Using a Linear Hall-effect IC
The Hall-effect IC may be connected with the help of the given connections, where the supply pins must go to the respective DC voltage terminals (regulated).
The output terminals may be connected to an appropriately calibrated voltmeter having a sensitivity matching the Hall output range.
Connecting a 0.1uF bypass capacitor directly across the ICs supply pins is recommended in order to safeguard the device from externally induced electrical noise or stray frequencies.
After powering up, the device may require a few minutes of stabilization period during which it must not be operated with a magnetic field.
Once the device gets internally temperature-stabilized, it may be brought under the influence of a external magnetic field.
The voltmeter should immediately register a deflection corresponding to the strength of the magnetic field.
For identifying the flux density of the magnetic field, the devices output voltage may be plotted and located over the Y-axis of a calibration curve, the intersection of the output level with the calibration curve would confirm the corresponding flux density on the X-axis curve.
Linear Hall-effect Devices could have diverse application areas, a few of them are presented below:
Non-Contact Current sensing meters for sensing current externally passing through a conductor.
Power sensing meter, identical to the above (watt-hour metering)
Current trip-point detection, where an external circuitry is integrated with a current sensing stage for monitoring and tripping a specified over current limit.
Strain gauge meters, where the strain factor is magnetically coupled with the Hall sensor for providing the intended outputs.
Biased (magnetically) sensing applications
Ferrous metal detectors, where the Hall effect device is configured to detect the ferrous material through relative magnetic induction strength detection
Proximity sensing, same as the above application, the proximity is sensed by approximating the relative magnetic strength over the Hall device.
Joy-stick with intermediate position sensing
Liquid-level sensing, another relevant sensing application of the Hall device.
Other similar application which involve magnetic field strength as the main medium along wit the Hall effect device are:
Temperature/pressure/vacuum sensing
(with bellows assembly)
Throttle or air valve position sensing
Non-contact potentiometers
0 Response to "Linear Hall-Effect Sensors Explained"
Posting Komentar